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This paper initiates the theoretical analysis of microscale resonators containing internal

flow, modelled here as microfabricated pipes conveying fluid, and investigates the

effects of flow velocity on damping, stability, and frequency shift. The analysis is

conducted within the context of classical continuum mechanics, and the effects of

conditions, geometry, and flow velocity on vibrations are discussed. A scaling analysis

suggests that slender elastomeric micropipes are susceptible to instability by divergence

(buckling) and flutter at relatively low flow velocities of �10 m/s.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Miniaturized beam and plate resonators are the core components of microelectromechanical systems (MEMS) used for
applications ranging from sensing and communications to energy harvesting and fundamental studies of quantum
mechanical systems [1]. Across these disparate applications, the design of high-performance microresonators is dominated
by three basic requirements. The first is to attain high values for the natural frequency of vibration (10 kHz to 1 GHz) to
enable sensing at high rates and match the frequencies of the signals of interest. The second is to reduce the damping factor
to low values between 10�6 and 10�4 (or, equivalently, attain a high mechanical quality factor, Q, between 10 000 and a
million), so as to enhance sensitivity and frequency selectivity. The third is to ensure the stability of vibrations and
minimize any drift in the operating frequency due to nonlinear effects and environmental coupling [2].

The design parameters that can be tailored to meet these requirements are the material properties, size, geometry,
boundary conditions, and modal properties. The design of microresonators used for sensing was initially dominated by
structures with solid rectangular cross-sections, partly due to the constraints imposed by microfabrication technologies;
however, subsequent generations have grown increasingly sophisticated in terms of their structural design and mode
shapes. In this paper, we focus on a class of microresonators that may be characterized as micropipes containing internal

fluid flow [3–10].
Flow-containing micropipes enable resonant sensing in a manner that combines a high Q (in excess of 10 000) with the

ability to interrogate a fluidic specimen [3–8]. Sensing is achieved by operating the device within an evacuated chamber
and detecting small changes in the natural frequency (of the order of one part in a million). Quantifying the effects of flow
on damping and frequency shift is essential for the design and operation of such sensors. Another device, aptly described as
a ‘‘micromachined fountain pen’’, is used for local surface patterning and direct-write lithography [9,10]. These cantilevered
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micropipes are connected to a fluidic reservoir at the clamped end, and eject fluid from the free end; hence, preventing any
flow-induced instability is a key requirement for successful operation.

The effects of internal fluid flow on the dynamics and stability of macroscale structures, with dimensions ranging from a
few centimeters to tens of meters, have been extensively studied for over 60 years (see, for example, [11]). Depending
upon the details of the fluid-structure interactions (FSI), increasing the flow can lead to a shift of the natural frequency,
change of the damping factor, and both static and dynamic instabilities in the form of buckling and flutter. More recently,
several studies of FSI in nanometer-scale structures have been published in connection with flow through carbon
nanotubes (see, for example, [12–14]). However, the intermediate range of micrometer-scale structures, which is of interest
for MEMS, remains largely unexplored. This motivates the work presented in this paper. We consider the dynamics of the
relatively simple, but technologically relevant, case of straight micromachined pipes containing internal fluid flow, and
present results for the effects of scale, materials, and flow velocity on damping, frequency shift, and stability.

2. Analysis using classical continuum mechanics

The structures under consideration are modelled as straight and slender micromachined pipes of length L between
supports, flexural rigidity EI, and mass per unit length m. The cross-section of the pipe is symmetric, either circular or
rectangular, and may contain one or a set of parallel internal channels, as illustrated in Fig. 1. In all cases, the smallest
structural dimension exceeds 1mm; thus, for the circular pipe of Fig. 1(a), 1mmoDio100mm, 0:1oðDi=DoÞo0:5 and
ðL=DoÞ410. The axisymmetric internal flow in the micromachined pipe is due to a viscous, incompressible, single-phase
fluid of mass per unit length M flowing with velocity U. The cross-section contains millions of atoms for the solids and
fluids of interest in these flow-containing micropipes, which suggests that the use of continuum theories is appropriate for
analyzing the effects of flow on dynamics.

Over the past two decades, the constitutive relationships and laws of classical continuum mechanics (including Hooke’s
law for elasticity, generalized Hooke’s law for thermoelasticity, Fourier’s law for heat conduction, Navier–Stokes equation
for fluid flow, and Euler–Bernoulli theory for slender elastic structures) have been extensively used to analyze the static and
dynamic behavior of microscale structures, and to analyze flow through micrometer-scale channels. These studies were
motivated by the need to design the components of MEMS for numerous applications, as documented in several textbooks
and monographs (see, for example, [15–18]), and reflect a growing consensus on the utility and validity of classical
continuum theories at micrometer length scales.

Mathematical models based on continuum mechanics contain structural geometry and material properties as
parameters, and the effects of scale can be studied by analyzing these models. Many properties—including elastic modulus,
density, Poisson’s ratio, coefficient of linear expansion, and specific heat—exhibit essentially the same values for both
macroscale and microscale specimens of common engineering materials [15,19]. In contrast, the yield strength, fracture
strength, and internal friction can be strong functions of size, processing methods, and microstructure; measurements on
microscale specimens are usually necessary to obtain their values [20]. Fortunately, these properties are not relevant for
the problems under consideration here.

For the sake of completeness, we note that the validity of classical continuum theories must be re-examined if
structures are further miniaturized down to nanometer dimensions, and operated in extreme environments. Deviations
from classical Navier–Stokes behavior are expected when the channel dimensions are comparable to the diameter of the
molecules comprising the fluid [21,22]. Similarly, Fourier’s law may not be accurate for heat conduction across nanoscale
Fig. 1. (a) Illustration of a straight pipe of length L containing internal channels of circular cross-section with outer diameter Do and inner diameter Di. (b)

Illustration of the doubly symmetric rectangular cross-section of a pipe containing a pair of parallel channels of width wc and height hc. The width and

thickness of the pipe are denoted wb and hb, respectively.
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structures when the mean free paths of the quanta of heat transport are comparable to structural dimensions [23]. Other
deviations from classical behavior are expected if the temperature is reduced to extremely low values of the order of 1 K.
Indeed, accessing the quantum states of micro- and nanomechanical resonators at cryogenic temperatures is a topic of
intense current research [24].

Taken together, these arguments suggest that classical continuum theories can be used with confidence to analyze the
dynamics of microscale pipes containing internal flow. Therefore, the vast and rich literature on FSI in macroscale
structures can be harnessed to study the effects of miniaturization on dynamics. A natural starting point for our analysis is
the well-established equation of motion for a straight pipe conveying flow.

2.1. Equation of motion

The simplest linearized equation for the free, damped flexural vibrations of a flow-containing pipe is [11,25,26]

EI 1þ aþ m
O

� � q
qt

� �
q4w

qx4
þMU2 q

2w

qx2
þ 2MU

q2w

qx qt
þ c

qw

qt
þ ðM þmÞ

q2w

qt2
¼ 0; (1)

where x 2 ½0; L� is the axial coordinate, t is time, and w(x,t) is the lateral deflection. This equation ignores the effects of
gravity, but includes the effects of dissipation in the fluid and in the material of the pipe, with the latter modelled as a
combination of hysteretic and viscoelastic damping. Here, m is the dimensionless hysteretic damping coefficient, O is the
circular frequency, a is the viscoelastic damping coefficient modelled using a two-parameter Kelvin–Voigt model, and c

denotes the viscous damping coefficient due to the fluid (air) surrounding the pipe. The equation for undamped free
vibrations is recovered by setting a=0, m=0 and c=0 in Eq. (1).

Eq. (1) is valid for the flow of a single-phase fluid that completely fills the channel, and the flow is modelled as a plug-
flow, which is quite appropriate for fully developed turbulent flow.1 The fluid itself is assumed to be viscous; however,
viscosity-related terms do not appear explicitly in the equation of motion because the viscous traction on the pipe and
viscous pressure-loss forces exactly cancel out in the linear limit. The hysteretic damping, m, is typically used to analyze the
response to a harmonic excitation, but can also be used to obtain useful approximations of the free response for lightly
damped systems—i.e., provided that the damping ratio, z, is small compared to unity [11].

For convenience, Eq. (1) can be expressed in non-dimensional form as
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and the spatial and temporal derivatives are given by Z0 ¼ ðqZ=qxÞ and _Z ¼ ðqZ=qtÞ. The dimensionless viscoelastic damping,
a, and the dimensionless viscous damping, s, are defined as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI

M þm

r
a
L2
; s ¼ cL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIðM þmÞ
p : (4)

All the details of the cross-sectional shape are captured by the dimensionless mass fraction, b, in this one-dimensional
model.

3. Scaling analysis of stability

The stability of systems governed by Eq. (2) has been extensively analyzed, and the principal results may be summarized
in terms of the non-dimensional critical flow velocity, uc [11]. The first instability occurs by divergence for beams with both
ends supported, and by single degree-of-freedom flutter for cantilevered beams. The dimensionless critical velocities for
pinned–pinned and clamped–clamped beams are uc ¼ p and 2p, respectively, independent of dissipation or b. In contrast,
ucC5 or larger for cantilevers, and this value depends on the type of damping and b [11].

The corresponding dimensional values of the critical flow velocities, Uc , follow directly from Eq. (3). Thus, for the beam
with circular cross-section shown in Fig. 1(a), we obtain
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: (5)

Here rf is the fluid density, l1 ¼ ðDi=DoÞ is the cross-sectional aspect ratio, and l2 ¼ ðL=DoÞ is the slenderness ratio. Using
Eq. (5), the critical flow velocity was plotted as a function of these two aspect ratios for different classes of engineering
1 If, however, the flow is laminar and modelled as a Poiseuille flow, the definition of M and U in MU 2 and MU would strictly need to be refined; but, in

accordance with Benjamin’s arguments [27], the effect on the dynamics is expected to be small.
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Fig. 2. The effect of material properties and beam aspect ratios on the critical velocities for instability. The discontinuous and solid lines denote beams

with l2 ¼ ðL=DoÞ ¼ 10 and l2=100, respectively. The elastic modulus corresponding to each curve is indicated on the graph.
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materials: elastomers (1 GPaoEo10 GPa), metals (70 GPaoEo200 GPa), and ceramics (100 GPaoEo450 GPa). In all cases,
the fluid within the pipe is water (rf=103 kg/m3). Fig. 2 shows that, for beams with a low slenderness ratio of ðL=DoÞ ¼ 10,
the critical flow velocities exceed several hundred meters per second for all materials. At such high flow velocities, other
factors, including the possibility of cavitation [28], must be included in the analysis. However, for slender elastomeric pipes
with ðL=DoÞ ¼ 100, the critical velocities reduce to �10 m/s, which implies that instability during operation must be
factored into the design of such devices. This analysis can readily be extended to analyze the effects of different materials
and cross-sectional shapes on stability.
4. Analysis of damping and frequency shifts

The effects of miniaturization on damping are not susceptible to simple scaling analyses because of the inherent
complexity and variety associated with dissipative phenomena, and because many important aspects of damping remain
unexplored at all length scales. Two such issues of relevance to MEMS are: (i) the relative importance of different damping
mechanisms, and (ii) the quantification of the ultimate limits on damping established by a combination of thermoelastic
damping (TED) and flow-induced damping, thereby establishing the absolute upper limit on the performance of resonant
microsensors. These open questions can be addressed by solving Eq. (2), subject to appropriate boundary conditions, to
obtain the complex eigenfrequencies, o; the real part is the dimensionless oscillation frequency, and the ratio of the
imaginary and real parts is the damping ratio of the system, z ¼ ImðoÞ=ReðoÞ.

Using the Galerkin method, the complex eigenfrequencies were obtained for beams of two different materials
(single-crystal silicon and a representative elastomer) with rectangular and circular cross-sections. For each case, five
different damping models were studied: (i) no damping ðs ¼ 0; a ¼ 0; m ¼ 0Þ, (ii) viscous damping ðsa0; a ¼ 0; m ¼ 0Þ,
(iii) viscoelastic damping ðs ¼ 0; aa0; m ¼ 0Þ (iv) hysteretic damping ðs ¼ 0; a ¼ 0; ma0Þ and (v) a combination of all
types of damping ðsa0; aa0; ma0Þ. To begin with, the dimensionless viscous damping constant was set equal to a
realistic value, i.e. s=0.01. Thereafter, the dimensionless viscoelastic, a; and hysteretic, m, damping coefficients were chosen
to let the value of the first-mode damping factor, z1, at zero flow velocity, i.e. u=0, be identical to the first-mode damping
factor, z1, for the case of s=0.01 This method of determining the individual damping factors was utilized in an effort to
demonstrate the relative importance of each type of damping on the dynamics of this system.

Typical results are presented in Table 1 for pinned–pinned and cantilevered elastomeric pipes of circular cross-section
with b=0.14. A comparison of the values of the dimensionless complex eigenfrequencies and damping factors at u=2.00 for
the two lowest modes, along with the values of the critical flow velocities, uc, shows that the viscoelastic and hysteretic
damping models lead to identical results. The critical flow velocity for flutter in the second mode of the cantilevered pipe
ranges from 5.06 to 5.15, depending on the type of damping.

Subsequently, the hysteretic damping was modelled as thermoelastic damping (m ¼ mTED; s ¼ 0; a ¼ 0Þ. This
mechanism arises as a consequence of the coupling between strain and temperature fields in flexural-mode resonators,
and establishes the absolute lower bound on material damping [29–32]. Moreover, some microscale resonators (including
the practically important case of single-crystal silicon beams) can be designed to operate at the thermoelastic limit.
Recently, expressions for the frequency dependence of mTED in hollow micropipes have been presented in the form of an
infinite series [33]. These expressions do not contain any free parameters, and were obtained by solving the thermoelastic
heat conduction equation with the assumption of one-way coupling—that is, the stress field generates a temperature field



ARTICLE IN PRESS

Table 1

Some quantitative results at u=2.00 and u=uc for an elastomer pipe with b=0.14.

Cantilevered system

No damping Viscous damping
r=0.01

Viscoelastic damping

a ¼8:09�10�4

Hysteretic damping
l=2.84�10�3

Combination of r;a
and l

First mode x at
u=2.00

3.6883þ1.5994i

(z=0.4336)

3.6862þ1.6043i

(z=0.4352)

3.6865þ1.6044i (z=0.4352) 3.6865þ1.6044i

(z=0.4352)

3.6826þ1.6143i

(z=0.4384)

Second mode x at
u=2.00

20.8349þ1.4326i

(z=0.0688)

20.8345þ1.4377i

(z=0.0690)

20.8189þ1.6288i (z=0.0782) 20.8189þ1.6288i

(z=0.0782)

20.8007þ1.8301i

(z=0.0880)

uc 5.06 (2nd mode

flutter)

5.07 (2nd mode

flutter)

5.11 (2nd mode flutter) 5.11 (2nd mode flutter) 5.15 (2nd mode

flutter)

Second mode xc at
u=uc

14.0333–0.0000i

(z=0)

14.0153–0.0000i

(z=0)

13.8775–0.0000i (z=0) 13.8775–0.0000i (z=0) 13.7390–0.0000i

(z=0)

Pinned–pinned system

No damping Viscous damping
r=0.01

Viscoelastic damping

a ¼ 1:03� 10�4

Hysteretic damping
l=1.01�10�3

Combination of r;a
and l

First mode x at
u=2.00

7.5654þ0.0000i (z=0) 7.5654þ0.0049i

(z=0.0007)

7.5654þ0.0050i (z=0.0007) 7.5654þ0.0050i

(z=0.0007)

7.5654þ0.0149i

(z=0.0020)

Second mode x at
u=2.00

37.4869þ0.0000i

(z=0)

37.4869þ0.0050i

(z=0.0001)

37.4868þ0.0800i (z=0.0021) 37.4868þ0.0800i

(z=0.0021)

37.4865þ0.1650i

(z=0.0044)

uc 3.15 (1st mode

buckling)

3.15 (1st mode

buckling)

3.15 (1st mode buckling) 3.15 (1st mode buckling) 3.15 (1st mode

buckling)

Fig. 3. Dimensionless complex frequency graph (Argand diagram) as a function of the dimensionless flow velocity, u, for a thermoelastically damped,

pinned–pinned, single crystal silicon micropipe with b=0.1. The first two modes become unstable by divergence at critical flow velocities of p and 2p,

respectively; for u4p, the first-mode locus lies on the Im(o)-axis, and so does the second-mode locus just beyond u=2p.
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during vibration, but is itself unaffected by the resulting changes in temperature; this is valid because the temperature
changes under consideration are always small (typically, o0.1 percent for a beam originally at 300 K). For the same reason,
the fluidic field is also unaffected by any changes in temperature due to the thermoelastic effect; thus, the effects of TED
can be appropriately modelled by setting m ¼ mTED in Eq. (2).

Typical results are presented in the form of Argand diagrams, with axes corresponding to the imaginary and real parts of
the dimensionless complex eigenfrequency, for the representative cases of pinned–pinned and cantilevered single-crystal
silicon micropipes containing a pair of parallel internal channels, as shown in Fig. 1(b), with hb=7mm, wb=33mm, hc=3mm,
and wc=8mm. Simple closed-form expressions for TED in this structure, along with material properties for silicon at 300 K,
were obtained from Ref. [33].

The Argand diagram for the pinned–pinned beam in Fig. 3 is plotted on a semi-log graph because of the relatively low
level of damping in this system. At u=0, the dissipation is entirely due to thermoelastic damping. As u is gradually
increased, Im(o) increases slightly, but Re(o) diminishes at a faster rate. Therefore, as the flow velocity increases, the
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frequencies of oscillation are diminished and the damping factors are increased. This continues until a critical value of u at
which the system becomes unstable by divergence. As expected [25], uc=p for the first mode, and uc=2p for the second
mode. Beyond the point of divergence, the behavior of the system must be analyzed using nonlinear theory [11]. The third
and fourth modes are stable over the range of non-dimensional flow velocities investigated in this study.

Fig. 3 shows that ReðoÞ-0 for u near p for the first mode. Hence, the hysteretic component of the damping model, as
well as the precise values of Im(o), become questionable in this range of u. However, the main interest lies in the predicted
values of ImðoÞ and z in the practically important range 0ruo2, as well as in obtaining uc. Calculations with the hysteretic
damping excised, and the viscoelastic component augmented so as to give the same total damping at u=0, yield an Argand
diagram not perceptibly different from that in Fig. 3. This observation is entirely consistent with the results presented in
the third ðaa0Þ and fourth ðma0Þ columns of Table 1 for the elastomeric pipe.

The Argand diagram for the cantilevered system is shown in Fig. 4. As u is gradually increased, Im(o) increases at a
much faster rate compared to the pinned–pinned beam, signifying that the system is subject to considerable flow-induced
Fig. 4. Dimensionless complex frequency graph (Argand diagram) as a function of the dimensionless flow velocity, u, for a thermoelastically damped,

cantilevered, single crystal silicon micropipe with b=0.1. In the scale of this figure, Im(o) at u=0 appears to be zero, though in fact it is not; e.g. Im(o)

attains values of 1.5�10�5 and 5�10�4 for the first and second modes, respectively, at u=0.

Table 2

Some quantitative results at u=2.00 and u=uc for a silicon micropipe with b=0.1.

No damping Viscous damping
r=0.01

Thermoelastic
damping, lTED [33]

Viscous damping and TED
r; lTED

Cantilevered system

First mode x at u=2.00 3.7882þ1.3772i

(z=0.3635)

3.7864þ1.3821i

(z=0.3650)

3.7882þ1.3772i

(z=0.3636)

3.7864þ1.3821i (z=0.3650)

Second mode x at u=2.00 20.8191þ1.2216i

(z=0.0587)

20.8188þ1.2267i

(z=0.0589)

20.8190þ1.2221i

(z=0.0587)

20.8187þ1.2272i (z=0.0589)

uc 4.78 (2nd mode flutter) 4.79 (2nd mode flutter) 4.78 (2nd mode flutter) 4.79 (2nd mode flutter)

Second mode xc at u=uc 14.2182–0.0000i (z=0) 14.1932–0.0000i (z=0) 14.2179–0.0000i (z=0) 14.1930–0.0000i (z=0)

Pinned–pinned system

First mode x at u=2.00 7.5775þ0.0000i (z=0) 7.5775þ0.0050i

(z=0.0007)

7.5775þ0.0050i

(z=0.0000)

7.5775þ0.0051i (z=0.0007)

Second mode x at u=2.00 37.4706þ0.0000i 37.4706þ0.0050i 37.4706þ0.0011i 37.4706þ0.0061i

(z=0) (z=0.0001) (z=0.0000) (z=0.0002)

uc 3.15 (1st mode buckling) 3.15 (1st mode buckling) 3.15 (1st mode buckling) 3.15 (1st mode buckling)

Clamped–clamped system

First mode x at u=2.00 21.1791þ0.0000i 21.1791þ0.0050i 21.1791þ0.0005i 21.1791þ0.0055i

(z=0) (z=0.0002) (z=0.0000) (z=0.0003)

Second mode x at u=2.00 60.1920þ0.0000i 60.1920þ0.0050i 60.1920þ0.0016i 60.1920þ0.0066i

(z=0) (z=0.0001) (z=0.0000) (z=0.0001)

uc 6.29 (1st mode buckling) 6.29 (1st mode buckling) 6.29 (1st mode buckling) 6.29 (1st mode buckling)
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damping. At u=4.78, the second-mode locus crosses to the negative-Im(o) half of the plane; as Imðo2Þo0 and Reðo2Þa0,
this indicates amplified oscillations or single degree-of-freedom flutter [11]. Moreover, the fourth-mode locus is observed
to cross over to the negative-Im(o) at uC12:0; thus, from the linear perspective, the system becomes unstable by single
degree-of-freedom flutter in its fourth mode as well.

Table 2 summarizes the complex eigenfrequencies and damping factors at u=2.00, along with the calculated values of
the critical flow velocities, uc, for the thermoelastically damped beam. For comparison, the corresponding values are listed
for beams with no damping ða ¼ 0; m ¼ 0 and s ¼ 0Þ, viscous damping ða ¼ 0; m ¼ 0 and s ¼ 0:01Þ, and a combination of
viscous damping and TED ða ¼ 0; m ¼ mTED and s ¼ 0:01Þ.

5. Concluding remarks

Microscale pipes containing flow constitute an interesting new class of devices, both for enabling novel applications for
MEMS, and for fundamental studies of the effects of size on fluid-structure interactions. This paper presented the first set of
results on the effects of miniaturization on stability, damping, and frequency shifts in straight micromachined pipes
containing an internal flow due to a single-phase incompressible fluid. The analysis was performed within the context of
classical continuum mechanics, and numerical results were presented for the effects of size, boundary conditions,
dissipation, materials, and flow velocity on the natural frequency, damping, and stability of flow-containing pipes. The
results showed that: (i) flow-induced damping and frequency shifts in representative single-crystal silicon structures can
exceed the typical specifications for resonant microsensors, and (ii) slender elastomeric pipes can become unstable by
divergence and flutter at flow velocities of �10 m/s. These results highlight the importance of considering fluid-structure
interactions in the design of microscale resonators containing internal flow.
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